Large

Large hybrid shells, fired by battleship-sized guns.

Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.