Large

Large faction issue hybrid shells, fired by battleship-sized guns.

Caldari Navy Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Caldari Navy Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Caldari Navy Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Caldari Navy Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Caldari Navy Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Caldari Navy Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Caldari Navy Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Caldari Navy Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.
Dread Guristas Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Dread Guristas Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Dread Guristas Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Dread Guristas Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Dread Guristas Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Dread Guristas Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Dread Guristas Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Dread Guristas Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.
Federation Navy Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Federation Navy Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Federation Navy Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Federation Navy Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Federation Navy Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Federation Navy Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Federation Navy Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Federation Navy Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.
Guardian Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Guardian Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Guardian Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Guardian Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Guardian Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Guardian Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Guardian Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Guardian Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.
Guristas Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Guristas Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Guristas Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Guristas Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Guristas Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Guristas Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Guristas Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Guristas Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.
Shadow Antimatter Charge L
Consists of two components: a shell of titanium and a core of antimatter atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced optimal range.
Shadow Iridium Charge L
Consists of two components: a shell of titanium and a core of iridium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 20% increased optimal range. 24% reduced capacitor need.
Shadow Iron Charge L
Consists of two components: a shell of titanium and a core of iron atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 60% increased optimal range. 30% reduced capacitor need.
Shadow Lead Charge L
Consists of two components: a shell of titanium and a core of lead atoms suspended in a plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 50% reduced capacitor need.
Shadow Plutonium Charge L
Consists of two components: a shell of titanium and a core of plutonium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 37.5% reduced optimal range. 5% reduced capacitor need.
Shadow Thorium Charge L
Consists of two components: a shell of titanium and a core of thorium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 12.5% reduced optimal range. 40% reduced capacitor need.
Shadow Tungsten Charge L
Consists of two components: a shell of titanium and a core of tungsten atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 40% increased optimal range. 27% reduced capacitor need.
Shadow Uranium Charge L
Consists of two components: a shell of titanium and a core of uranium atoms suspended in plasma state. Railguns launch the shell directly, while particle blasters pump the plasma into a cyclotron and process the plasma into a bolt that is then fired. 25% reduced optimal range. 8% reduced capacitor need.